\begin{tabbing} $\forall$$T$:Type, $f$:($T$$\rightarrow$$T$), $R$:($T$$\rightarrow$$T$$\rightarrow\mathbb{P}$). \\[0ex]retraction($T$;$f$) \\[0ex]$\Rightarrow$ ($\forall$$x$:$T$. $R$($x$,$x$)) \\[0ex]$\Rightarrow$ \=($\forall$$x$, $y$, $z$:$T$.\+ \\[0ex]($x$ = $f$($y$)) \\[0ex]$\Rightarrow$ ($\neg$($x$ = $y$)) \\[0ex]$\Rightarrow$ $y$ is $f$$\ast$($z$) \\[0ex]$\Rightarrow$ ($\forall$$u$:$T$. $y$ is $f$$\ast$($u$) $\Rightarrow$ $u$ is $f$$\ast$($z$) $\Rightarrow$ $R$($u$,$z$)) \\[0ex]$\Rightarrow$ $R$($x$,$z$)) \-\\[0ex]$\Rightarrow$ \{$\forall$$x$, $y$:$T$. $x$ is $f$$\ast$($y$) $\Rightarrow$ $R$($x$,$y$)\} \end{tabbing}